Cove Usability Properties

Matt Purkeypile, June 2009

I had originally tried to back up the usability properties section in the dissertation with more examples and rationale. I had a hard time finding much to support my usability claims, actually usability in general, in the literature. I also felt that this didn’t contribute as much to the dissertation given much of the other work in it. This represents the uncompleted section before I cut it out of the dissertation. In the dissertation this was replaced with a bulleted list, where each bullet is one of the sub sections.
This is simply presented “as is” and is clearly incomplete. I don’t have any plans to expand this into a full blown work.
1.1 Cove Usability Properties
The usability properties of Cove outline goals that have been targeted for ease of use and are outlined in this section. Together with the proof criteria (section 3.2), which are the function properties, these largely represent the requirements Cove has been designed to satisfy.
1.1.1 Consistent Naming

The names of all components such as classes, methods, and parameters should be as consistent as possible in a framework. This reduces the learning curve of the framework because a consistent convention is used across the framework. Take the example in Figure 114. In this case the inconsistent naming of Arrange() and Sort() for different interfaces leads to confusion since a different method has to be called depending on the interface being worked with. The best practice would be to name the method the same in each interface, so that if a user wishes to organize the class in a particular way they end up calling the a method of the same name regardless of the context.

1. public interface Foo

2. {

3. /// <summary>

4. /// Organize the elements of the interface highest to

5. //// lowest.

6. /// </summary>

7. void Sort();

8. }

9. public interface Bar

10. {

11. /// <summary>

12. /// Organize the elements of the interface highest to

13. /// lowest.

14. /// </summary>

15. void Arrange();

16. }
Figure 121. Example of inconsistent method names.

1.1.2 Consistent Ordering

Ordering of parameters need to be consistent between similar calls. This provides convenience and ease of use through consistency. This is especially true for overloaded methods, as shown in Figure 115. In this case the PropagateChanges parameter is always the first one. It is obvious that this update method would be harder to use if this were the middle parameter in method three as a programmer would have to look up or remember the ordering for each of the overloaded Update methods. This also makes maintaining the code that uses this interface a bit more difficult, as one could not simply tack on the Replications parameter when switching from method 2 to method 3 if the ordering was not consistent. Thus consistent ordering reduces the learning curve of the framework and increases the ease at which maintenance and refactoring can be performed.

1. public interface SampleInterface

2. {

3. //method 1

4. public void Update(bool PropagateChanges, double Value);

5. //method 2

6. public void Update(bool PropagateChanges, string Value);

7. //method 3

8. public void Update(bool PropagateChanges, string Value, int Replications);

9. }
Figure 122. Example of consistent ordering of parameters.

Cove exhibits this consistent ordering in all overloaded methods as well as similar methods. An excellent example is the Slice() method within the base IQuantumRegister interface. This method creates a new logical register from an existing one from the qubits specified by a start and stop index. So to get a slice of qubits from index 1 to 3 the user would call Slice(1, 3). Applying an operation, or operations, can also be done with this new slice in one call. The method definitions from the interface illustrate this:

1. IQuantumRegister Slice(int StartIndex, int StopIndex);

2. IQuantumRegister Slice(int StartIndex, int StopIndex, IQuantumOperation Operation);

3. IQuantumRegister Slice(int StartIndex, int StopIndex, IEnumerable<IQuantumOperation> Operations);
Figure 123. Overloads of the Slice method.

As one can see, the start and stop indexes are always the first two parameters to the method. Furthermore, the other slice methods are also overloaded to apply operation(s) in the same call. In all of these other overloads the operations are the last parameters

1.1.3 Complete Names
Classes, methods, properties, parameters, and so on should be detailed and completely spelled out. Complete names make it easier for novices to understand and navigate the framework, and avoid confusion or ambiguity. Unless an abbreviation sees widespread use within a problem domain, it should not be used. An example of an acceptable abbreviation is “qubit”, which is widely used as an abbreviation for “quantum bit”. All too often in programming, obscure and/or ambiguous abbreviations are used. For those unfamiliar with the framework names that are not detailed have to be looked up, decreasing productivity. The argument is sometimes made that shorter names are faster to type, but any gain in from not having to type a few extra characters is easily lost consulting documentation for all but the most experienced with the framework: a fraction of a second can be saved typing a shorter name, or minutes lost as documentation is consulted.

1.1.4 Common Prefixes
Similar methods share a common prefix so that they show up close to each other in intellisense tools or in any other alphabetical listing of methods. An excellent example of this is the code document object model (CodeDOM) classes within Microsoft’s .NET framework: they all begin with “Code” so you can see all of them grouped together with intellisense tools. Thus when you are entering code in the IDE related things show up next to each other instead of being scattered about the scroll window. Figure 117 shows how operations all show up close together in intellisense tools since they are all prefixed with “Operation”.
[image: image1.png]Qubit TestQubit = new Qubit();

Testgubic.d|
¥ Measure
& MeasureWithlabel
¥ OperationHadamard
@ Operationldentity
Moo |
¥ OperationsGate
¥ OperationTGate
¥ OperationYGate
¥ OperationZGate
¥ ResetTo

]

[vod Qubit. Operationiiot
[Perform the Not operation on the qubit, This operation s o known as the X gate.

Figure 124. Example of how operations with the same prefix show up together in intellisense tools.

Prefixes should also be used for abstract classes and interfaces to distinguish the fact that they cannot be instantiated. Within Cove the prefix “I” should be used for interfaces and “Abstract” should be used for abstract classes. To be consistent with the .NET framework, which is utilized by Cove, the suffix “Exception” should also be used for exceptions.

1.1.5 Static Methods
Methods that do not utilize the state of the current instance should be static; that is they have no state information and can be used without instantiating an object. As the following example shows, an excellent example is an add method– it executes the same every time and has no state associated with it. Requiring the user to instantiate objects in these cases is an annoyance and leads to more code, decreasing readability. The framework could still function correctly if objects had to be instantiated, which is why this is considered a usability property and not a functional one. The use of an Add() method in Figure 118 isn’t necessarily a recommendation over operator +, but merely an example since operator + is required to be static by the language.

using System;

public class StaticExampleProgram

{

 public static void Main(string[] args)

 {

 //a few examples of addition performed through an object

 //and displayed to the console

 AdderObject Example1 = new AdderObject();

 Console.WriteLine(Example1.Add(2, 3));

 AdderObject Example2;

 Example2 = new AdderObject();

 int ObjectResult = Example2.Add(4, 5);

 Console.WriteLine(ObjectResult);

 Console.WriteLine((new AdderObject()).Add(3, 4));

 //examples of addition through a static object

 int StaticResult = StaticAdder.Add(11, 13);

 Console.WriteLine(StaticResult);

 Console.WriteLine(StaticAdder.Add(17, 12));

 }

}

//provide the ability to add in a static class

public class StaticAdder

{

 public static int Add(int x, int y)

 {

 return (x + y);

 }

}

//allow addition to be performed from an object

public class AdderObject

{

 public int Add(int x, int y)

 {

 return (x + y);

 }

}

Figure 125. Examples of addition using an object and a static class.

1.1.6 Methods versus Operators

TODO: Per Dr. Sanden in the Summer 2008 draft: Perhaps references for these sorts of things could be found in rationales for languages such as smalltalk or java? [or for that matter Eiffel- Meyer tends to write about those things.
Extending the example in Figure 118, it would be possible to create an Add() method on a class or an addition operator. Operators are typically static (don’t need to create an instance of a class to use them), and a new object is typically returned as the result. For an addition operator x + y would return a new object z and leave x and y unchanged. The question then arises: if there is an Add() method on an object, should it manipulate the object it is called on or return a new object with the object it is called on unmodified? A key theme in usable frameworks is consistency, so the answer should be the same in all cases. When methods are called on classes they typically change the state of the instance they are called on. Since this behavior is common, in this case the Add() method would manipulate the object it is called on. In order to easily chain call together, a reference to the object after modification can be returned. Thus using the class in Figure 119, for an ExpandedInteger instance MyExample with an initial value of 0 for CurrentValue, the addition calls can be chained as in (MyExample.Add(3)).Add(4) where the end value of CurrentValue will be 7. Obviously supplied operators could be used as in MyExample = ((MyExample + 3) + 4), but the number of operators that can be overloaded is limited. Furthermore the code can easily become confusing if they are overloaded in a way not tied into their expected meaning. As an example the + operator typically represents addition or concatenation, overloading it to represent something else such as the tensor product vastly decreases the readability of the code. The tensor product is typically represented by the
[image: image2.wmf]Ä

 symbol [11], but this is typically not a character that can be overloaded or sometimes even valid within the language. Matlab uses the kron function
 for the tensor product [10].

/// <summary>

/// Simple example class to wrap an integer and

/// provide an add method.

/// </summary>

public class ExpandedInteger

{

 private int CurrentValue = 0;

 /// <summary>

 /// Correct behavior of an Add() method: modifies

 /// this instance and returns a reference to it.

 /// </summary>

 /// <param name="Value">Value to add</param>

 /// <returns>Reference to the object after

 /// addition is performed.</returns>

 public ExpandedInteger Add(int Value)

 {

 this.CurentValue = this.CurrentValue + Value;

 return this;

 }

}

Figure 126. Example of a correct Add() method.

1.1.7 Chaining Operations

TODO: Fill in why users should be able to do SomeRegister.X().Y().Z()
1.1.8 No Violations of Quantum Computing Limitations

Users should not be able to violate the limitations of quantum computing– in particular they should not be able to undo measurements, which is possible in a simulation since the probability amplitudes of all states must be kept track of. Therefore violations of quantum computing limitations should not be allowed.

As with the design of any programming method, the designers must take care not to cross the line between actual requirements and forcing what they think is the proper programming technique. However there is a balance between protecting users from themselves and being too restrictive, the framework should not be overly restrictive.

1.1.9 Programming to Interfaces

A key concept in Cove is that of programming to interfaces. In other words users write their code not against objects from implementations, but against the interfaces defined in the base library that all implementations must implement. In doing so the aspects that may vary from implementation to implementation are hidden and not used. This use of well defined interfaces is important enough that it is one of eight structural rules of thumbs outlined in the first chapter of the Software Engineering Institute’s (SEI) text Software Engineering in Practice [128].

By writing their code against the interfaces there is also the benefit that implementations can be interchanged with little or no changes to the user’s code. As there are not yet commercial quantum computers this allows for code to be written against simulated classical computers, and then possibly run on actual quantum computers in the future. Of course the simulation still experiences the exponential slow down, so the number of qubits that can actually be run in these simulations is limited. Furthermore, if quantum computers are expensive resources at first, much like classical computers were, it might make more sense for students of quantum computing to learn on these simulations. Since their code is not implementation specific it carries over into the world of true quantum computers.

Figure 120 shows a simple example of programming to interfaces in Cove. In the first two lines object instances are created, but assigned to variables of the interface type. The final line shows an example of working code. With this entire example the implementation could be swapped out by changing the references and the using statements in the module and no changes would be required to this snippet.

1. IQuantumRegister TestRegister = new QuantumRegister(2);

2. IQuantumOperation SomeOperation = new OperationCNot();

3. TestRegister.ApplyOperation(SomeOperation);
Figure 127. Programming to interfaces with Cove.

There is nothing within the framework that forces users to adopt this approach of programming to interfaces. There could very well be unanticipated cases where users have a legit need to program against a specific implementation. If frameworks enforce too many restrictions or try to protect users from themselves then by necessity they become rigid. Frameworks are meant to be flexible tools, so this rigidness runs counter to this. With obvious exception of not violating the limitations of quantum computing one of the philosophies of Cove is to favor flexibility above protecting users from their own mistakes. In the end there is little any framework or language can do to protect against misuse. The large number of poorly written and failed software projects in part provides evidence of this.
1.1.10 Base Interface
All classes in the framework should inherit from a common interface. By doing so a user of the framework knows that certain methods and/or members will be available on all classes. Furthermore it provides the framework designers a central location to put these methods– eliminating the need to replicate them between classes or interfaces. This can be especially important as the framework evolves. Java follows this principle in that there is an Object class that all classes derive from [115].

It could be argued that there should only be a base interface only if the classes share a common behavior. They do, as frameworks typically provide a tool kit to tackle a set of problems as detailed in 2.3. In the case of this dissertation all interfaces and classes exist to carry out quantum computation, so that is the common behavior that they share.

Having a base interface is a single place where a method can be added to all other interfaces and thus classes, even if it is empty at first. If there is not a base interface and a method needs to be added to everything then the designer is left with two choices. The first choice is to create a base interface. In this case there is the disadvantage that inheritance hierarchies have to be reworked to all derive or implement this new base interface. The second option is to simply add this common method to all classes and interfaces as high in the inheritance hierarchy as possible. The obvious trouble with this approach is that it goes against the object oriented principle of encapsulation.

1.1.11 Names Not Tied To Physical Behaviors
Commercial programmers of quantum computers are unlikely to have a strong physics background. To aid in programming the operations should be given names instead of specified by their rotations as in Omer’s QCL [78]. It is much easier to specify a “T gate” operation as opposed to
[image: image3.wmf]8

p

. Additionally, “T gate” is more readable. Users can specify their own operations or create clones if the prefer the more mathematical names. This applies to however the names are used: methods, operators, classes, and so on.

1.1.12 Users Can Create Arbitrary Operations
Following the principles of frameworks, users should be able to derive operations not provided. This is part of what makes this design a framework and not a library. Part of the difference between a black box framework and a library is that the classes in a framework can be extended. Since qubits and their operations cover continuous values there are an infinite number of them even for a single qubit. When it comes to restrictions, the only restrictions on user defined operations is that they must be unitary. Since users may be able to create operations that are not unitary if allowed to create arbitrary operation matrices, the framework itself should confirm all operations are unitary before applying them.

1.1.13 Users Can Work With Subsets of Quantum Registers

Quantum circuit diagrams are covered in detail in section 4.3, but are worth a brief introduction here as they can illustrate this usability property. In quantum circuits each wire in the circuit diagram represents a qubit. The diagram is read left to right, which also represents the passage of time. Everything that intersects the horizontal lines representing qubits is an operation on that qubit. All the qubits in the diagram could be considered a quantum register or computer consisting of those qubits.

Commonly operations are applied only to a subset of qubits in a register, much like one only performs operations on small subsets of bits in a classical computer. As an example, consider the two qubit register in Figure 121 consisting of qubits X and Y. A Hadamard operation (the H box in the diagram) is applied to only one of the qubits, qubit X. Thus when working with the code example of this register the user should be able to get a subset containing just qubit X, and then manipulate it as desired. More advanced manipulation such as logical swapping qubits X and Y can also be provided. A classical equivalent of this swapping might be maintaining an array of pointers and swapping two pointers instead of swapping what they point too, as shown in . All of these subset and manipulation methods can be purely logical and have no impact on the physical quantum register.

[image: image4.png]Qubit X

Qubit Y

Figure 128. Working with subsets of a two qubit register.

[image: image5.png]Array of Pointers

Objects on the Heap

Object X

Object Y

(Perform Logical Swap)

Objects on the Heap

0 >< Object X
1 Object Y

Figure 129. Logical swap of two classical objects via pointers.

1.1.14 Changing Ordering of Common Operations

Much like obtaining subsets of registers, the ordering of operations should also be changeable. As an example, a CNot operation has a control bit and target qubit. When the CNot operation is applied to a register the user should be able to swap the control and target qubit if desired. Figure 123 illustrates the CNot operation in two different orders. So if a user of the framework has a two qubit register and wants to implement this circuit, there are two approaches. The first approach is that the logical order of the register is reversed after the first CNot, effectively swapping the target and control for the second CNot. This technique is covered as part of manipulating registers in 5.6.13. The second option is to reverse the order of the control and target on the operation itself, leaving the register ordering unmodified.

[image: image6.png]Qubit X

Qubit Y

Figure 130. Two CNot operations, applied to the register in different orders.

This can also be extended much like the working with subsets of registers: The CNot operation may be expanded to apply to 3 qubits, but has no effect on the second qubit. This can be extended to 4 qubits as in Figure 124. In the case of Figure 124 the CNot operation is applied to 4 qubits, with the control being the first qubit and target being the third. The second and fourth qubits are unaltered, thus they could be considered to have the identity operation performed on them. The red box in the figure is meant to show that the operation applies to all four qubits, even though only two of them actually play a role in the operation. Note that this scheme implies that operators must be the same size as the register (perhaps a subset of one) that they are applied to. This exact match in size of operations and the registers avoids any ambiguity and makes which qubits are affected unmistakable.

[image: image7.png]Qubit W

Qubit X

Qubit Y

Qubit Z

Figure 131. CNot over 4 qubits.

1.1.15 Exceptions Instead of Error Codes
Exceptions should be utilized for errors instead of returning error codes, which are easily ignored, perhaps unintentionally. Additionally the use of exceptions helps to clearly distinguish error handling code from the code executed during normal operation. Exceptions are also a more common method of indicating errors in modern languages, some examples include C#, Python, and Java.

1.1.16 Operators Applied to Qubits, not Vice Versa

In the general an object’s state is modified by means such as calling methods on it. These methods then validate the input and then modify the object’s state accordingly. It is generally considered poor object oriented practice to make member variables of a class public, as this opens them up to direct modification by outside sources without these validation checks (in addition to other arguments such as coupling). This is something that is drilled into students of object oriented programming from the beginning as shown in many introductory texts such as [129], which states: “much of [a] chapter is dedicated to explaining how and why you should define classes this way”. Thus the state of an object is largely protected from being modified outside the object and modifications are made by making some sort of call against an object
.

Qubits represent data in quantum computing while operations modify the state of qubits. When treated as objects it is clearly the qubit(s) that are having their state changed when operations are applied, the state of the operation remains unchanged. Given this, operators should be applied to qubits; by doing so the qubit(s) can validate the operator before modifying their state. This is even more important when taking into account user defined operations. If qubit(s) were passed to user defined operators then it would be much harder to verify that what a user is doing is correct or does not corrupt state information of the qubit. For example, in the case of a simulated quantum computer it would be very hard to ensure that the user defined operator manipulating the state of a qubit directly is even unitary as required for quantum computation! Consequently the argument of operators being passed to qubits and not vice versa is an easy one to make given accepted object oriented practices.

1.1.17 Combining Operators

TODO: Be able to tensor and combine operators so that new ones can be made from the existing ones in an non-implementation specific way. Need to do in code too.
1.1.18 Flexible Initialization and Measurements to Classical Types

As previously mentioned, the input to a quantum computation may be classical for initialization purposes. Likewise, the end result after measurement is classical data. The simplest view of classical data is nothing more than a series of bits. While the framework could use bit arrays as input or output, this should be made flexible to include other common types such as unsigned integers of various sizes. As example, a user could initialize a register of 8 qubits to the unsigned integer 103 (0x67). When doing so narrowing needs to be watched out for, as in taking the result of a 10 qubit register and narrowing it to an 8 bit unsigned integer. Users may want to have an exception thrown or a way to test on these narrowing conversions if they result in loss of data. For simple cases this could be caught at compile time in some languages. However this isn’t the case for more complex examples such as prompting a user for a number of qubits then trying to cast the result as an 8 bit unsigned integer.

1.1.19 Documentation

The importance of detailed documentation cannot be overemphasized. The documentation is especially important for new users of the framework. Ideally all classes and methods will be thoroughly documented. Examples are also important as they allow users to integrate the snippets of code in their application and modify them as necessary. Intellisense documentation is also useful as it gives the user documentation within the integrated development environment.
� Likely short for Kronecker product, which is another name for the tensor product. TODO: Ref to Hirvensalo here.

� An exception to this is Python, where there isn’t really such a thing as a truly private variable.

_1289847729.unknown

_1259220004.unknown

