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Introduction

This paper includes a discussion of some of the simulation challenges that were encountered in Cove. These were primarily challenges that were not worked through in most of the literature, thus I thought they warranted a detailed explanation and discussion.
Originally the contents of this paper were included in chapter 6 of my dissertation Cove: A Practical Quantum Computer Programming Framework. It was decided near the end of my dissertation that this content should be removed since it was too detailed for the dissertation and it could help reduce the length. Consequently this is presented “as is” and is in a rough draft form cut straight from the dissertation that I have not yet reviewed. I may at some point consider using this as a basis for a paper, but that won’t happen until at least Fall 2009, if at all.
The dissertation, source code, presentations, and all other things pertaining to Cove can always be obtained through the website: https://cove.purkeypile.com.
1.1 Simulation Challenges

TODO: Fill in. Might want a more formal chapter title or reword
1.1.1 Partial Measurements

The state of a quantum register within the simulation is represented by a 1 x 2n matrix of complex numbers for n qubits. Those complex numbers represent the probabilities amplitudes for the various states. When the entire register is measured, a pseudo-random number is used to select the state collapsed to. Then the probabilities are ran through until the correct selection is found.

In the simplest example take a single qubit register in equal superposition, say 
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. This would be represented by the matrix in Figure 133. When this register is measured, first the probabilities of each state is generated: 0.5 for 
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 and 0.5 for 
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. If the random number is < 0.5 then it has collapsed to 
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. If the random number is >= 0.5 then it collapses to 
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Figure 136. Matrix representation of a single qubit register in superposition.

Extending the example to four qubits in even superposition helps solidify the example. Four qubits in equal superposition are in the state 
[image: image7.wmf]111
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. When measured this register of four qubits collapses to a number between 0 and 15, with an equal chance of each number. The matrix representation is a 1 x 16 matrix where each element is 
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. When measured a random number is generated and the matrix of probabilities is iterated through to find the proper state to collapse to. This is shown in 
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Figure 134
. The top row represents the top of the range, and the second row is the collapsed state as an unsigned integer. For clarity the third row in light grey is the binary representation of that number. So if the number random number is < 
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 then it collapses to 
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. If not, then it continues on to evaluate if it is < 
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, and collapses to 
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. This continues until the collapsed state is found. This concept is extended to deal with an arbitrary number of qubits. It is the probabilities of each state listed in Figure 134, not the probability amplitudes
. 
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Figure 137. Determining the collapsed state from a random number.

This is the basic case of measurement of a complete register, partial measurements (measuring a subset of the qubits in a register) is not quite as simple and not often detailed in the various texts and papers. Even though it has been shown that the measurements can be delayed until the end of a computation [1], this may not be the case when qubits are shared between computations. The probability amplitudes of the potential states may vary after a partial measurement, and need to be accounted for. Using the example of a register of 4 qubits in superposition of 0 – 15, lets measure the third qubit. Say that the third qubit collapses to 
[image: image85.wmf]0

 when measured. This then eliminates all states where the third qubit is 
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, leaving 8 (23) possibilities. This then leaves the register in the state shown in Figure 135.
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Figure 138. Register of four qubits that were in superposition after the third is measured.

This means that when a partial measurement occurs certain states must be eliminated and the amplitude of the remaining possible states increases. In this example the remaining states have doubled their amplitudes. To accomplish this on an n qubit register where m qubits are being observed first the collapse of the observed m qubits must be determined. To do this a temporary state is constructed to determine this partial collapse, and there will be 2m potential states to collapse to. Each element in this temporary state is the sum of all states that include it. So in the 4 qubit example and measuring a single qubit all the states where that qubit can be 
[image: image127.wmf]0

 are summed for one temporary state and the states where it can be 
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 are summed to get the other. Stated more generally, the matrix of the entire register is iterated through. For each element in the matrix the probability amplitude is added onto the appropriate temporary element.

Once the partial measurement is determined, the state of the entire register must be altered accordingly. Those states that include the measured result are increased and those that don’t include the measured result are set to 0. In the example, this leaves the register in the state shown in Figure 135. Even though it can be worked out, the exact altering of states is seldom covered even when partial measurement is discussed, however [2, 3] provide a good discussion.

To alter the remaining states the amplitudes of the possible partial measurements must be kept track of. These are then used to alter the states as shown in Figure 136 and Figure 137, where the possible states are shown as binary. This scales up to n qubit registers, by repeating a single measurement operation n times [3]. However in Cove all measurements are done as a single step by expanding this general procedure to n qubits. Correctness is help ensured via unit testing and by verifying that the register is in a valid state
 before and after the measurement.
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Figure 139. General state of a two qubit system.
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Figure 140. State of a two qubit system after partial measurement.

This general state can be a bit difficult to grasp, so a specific example will be shown. We’ll take the two qubit register shown in Figure 138:
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Figure 141. Initial state of two qubits in the partial measurement example.

Only the first qubit will be measured. So first the state it collapses two must be determined. The possible states are iterated through, and the probabilities of the ones that collapse to 
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are summed together, and the same thing is done for those that collapse to 
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. This gives the possibilities in Figure 139:
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Figure 142. Probabilities of collapse for the first qubit.

Once these probabilities are determined we can collapse the first qubit; for this example we’ll say the first qubit collapses to 
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. We can return this value to the user who requested the partial measurement. Now the entire state of the register must be altered based on this partial measurement. Part of the register has been collapsed, so any state that contains a 
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 for the first qubit is eliminated. We then alter the remaining states where the first qubit is 
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by dividing by the square root of the possible amplitudes. This final state after partial measurement is shown explicitly in Figure 140:
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Figure 143. Altering state after measurement of the first qubit.

1.1.2 Expanding Operations to Arbitrary Registers

TODO: Get the orders right. Qubit index 0 is the lowest. CNot is target index 1, control 0- backwards of “standard”.
Mathematically a quantum operation is a 2n x 2n unitary matrix of complex numbers, which operates on a register of n qubits. That register is represented by a 1 x 2n matrix. If the register is R and the operation O, then the state of the register after the operation, R’, is defined by R’ = OR.

Two simple examples are given in Figure 141 and Figure 142, where the Not operation has been defined in Table 5 and the CNot operation in Table 6. In Figure 141 the Not operation is the leftmost (2 x 2) matrix, which is operating on a (qu)bit that is 0 binary (no superposition). The result is the rightmost matrix, which is 1 binary. The second example is a 2 qubit operation, but like the first there is no superposition of the states being operated on. For this example in Figure 142 the CNot operation is the left most (4 x 4) matrix and is operating on 10 binary. In this example the first (qu)bit is the control qubit in the second is the target (qu)bit.  Since the control (qu)bit is 1 the target will be flipped. This means the result is 11 binary, and is represented by the right most matrix in the example.
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Figure 144. Performing a Not operation to flip 0 to 1. 
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Figure 145. Performing a CNot on 10 to get 11.

In these examples the size of the operation matched the size of the register, so the result is simply matrix multiplication. This isn’t always the case: it is perfectly valid to take an operation on m qubits and apply it to a n qubit register, where 
[image: image144.wmf]mn

<

. Building off the prior examples we could apply the Not operation to the second qubit in a two qubit register. Furthermore we could apply a CNot operation to a three qubit register where the third qubit is the control and the first qubit the second. For these cases we cannot simply apply the operation as is to the registers– the sizes mismatch so it is not a valid matrix multiplication. What is needed is for the operation matrix to be expanded where it operates on the entire register, yet performs the correct operation. So if Not is performed on the second qubit, the first is unaltered. 

Many discussions on quantum computing do not even point this fact out, much less provide a solution to it. Spector calls the solution to increasing the matrix to the proper size “explicit matrix expansion”, and outlines the algorithm in [4]. While he outlines the algorithm and a few ending results, there are no examples that walk through the algorithm. Much of the rest of this section consists of walking through some examples. For a more mathematical discussion of the solution to this problem the reader is referred to [5].

Spector outlines the expansion of an operation matrix for an n qubit system as follows, with G being the input matrix and M being the output matrix (based on [4]):

1. Create the 2n x 2n output matrix M.

2. Let Q be the set of qubit indices of the register which the operator is being applied to. Let 
[image: image145.wmf]'

Q

be the remaining indices which are not included in the operation.

3. 
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 if i and j differ in their binary representation, in any of the positions referenced by indices in 
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Q

.

4. Otherwise concatenate bits from the binary representation of i, in the positions referenced by the indices in Q (in numerical order), to get 
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i

. Do the same for j to get 
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j

. Then set 
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.

5. Return the expanded matrix, M.


Notice in the algorithm how it doesn’t matter what the elements are in G, only their positions and the positions in M matter. To illustrate the algorithm, we’ll work through the simple example of apply a single qubit operation to a two qubit register. The single qubit operation could be any operation, because it is the transformation to M we are focused on, so a, b, c, d will be used to represent the elements in a single qubit operation as shown in Figure 143. 
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Figure 146. Arbitrary single qubit operation.

 For the first example this arbitrary single qubit operation will be applied to the first qubit in a two qubit register. If we represent the single qubit operation as U then we are carrying out the circuit in Figure 144.
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Figure 147. Applying an arbitrary operation U to the first qubit in a two qubit register.

At this point we can begin the algorithm. The output matrix M will be a 4 x 4 matrix. Since the first qubit (index 0) is being operated on, Q = 0 and 
[image: image153.wmf]'

Q

 = 1. We can then iterate through and populate all the elements of M. This is done in Table 11. For clarity all numbers listed are in binary, where the right most bit is index 0. i  represents the column and j represents the row in the matrix. All numbers are given as two digit binary numbers, which are all that is needed to express the indices 0 – 3. When doing comparisons or calculations an “X” is given for a digit that does not matter.

Table 11.  Iteration through the matrix expansion algorithm for U on the first qubit in a two qubit register.

	I
	j
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Q

indices comparison
	Populate 
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, 
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?
	
[image: image157.wmf]i

*


	
[image: image158.wmf]j

*

 
	
[image: image159.wmf]ij

M



	00
	00
	0X = 0X
	Yes
	X0 = 00
	X0 = 00
	a

	01
	00
	0X = 0X
	Yes
	X1 = 01
	X0 = 00
	b

	10
	00
	1X != 0X
	No
	N/A
	N/A
	0

	11
	00
	1X != 0X
	No
	N/A
	N/A
	0

	00
	01
	0X = 0X
	Yes
	X0 = 00
	X1 = 01
	c

	01
	01
	0X = 0X
	Yes
	X1 = 01
	X1 = 01
	d

	10
	01
	1X != 0X
	No
	N/A
	N/A
	0

	11
	01
	1X != 0X
	No
	N/A
	N/A
	0

	00
	10
	0X != 1X
	No
	N/A
	N/A
	0

	01
	10
	0X != 1X
	No
	N/A
	N/A
	0

	10
	10
	1X = 1X
	Yes
	X0 = 00
	X0 = 00
	a

	11
	10
	1X = 1X
	Yes
	X1 = 01
	X0 = 00
	b

	00
	11
	0X != 1X
	No
	N/A
	N/A
	0

	01
	11
	0X != 1X
	No
	N/A
	N/A
	0

	10
	11
	1X = 1X
	Yes
	X0 = 00
	X1 = 01
	c

	11
	11
	1X = 1X
	Yes
	X1 = 01
	X1 = 01
	d


From Table 11 we can then construct the matrix that represents this application of a single qubit operation on the first qubit in a two bit register. This is given in Figure 145. We can verify that this is correct by applying the Not operation (see Table 5 for the definition) on the first qubit, shown in Figure 146. In this case we have a register of two qubits who are both 0: 
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. The Not is performed on the first qubit and we can see that the output is in fact 
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Figure 148. Single qubit operation on the first qubit of a two qubit register.
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Figure 149. Verifying the expansion is correct by applying Not on the first qubit.

For completeness, we can also carry out the algorithm when applying the single qubit operation to the second of two qubits in a register, in Table 12. When basing on the arbitrary single qubit operation (Figure 143), this results in the matrix in Figure 147, which is shown to be correct by example in Figure 148.

Table 12. Iteration through the matrix expansion algorithm for U on the second qubit in a two qubit register.

	I
	J
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Q

indices comparison
	Populate 
[image: image165.wmf]i

*

, 
[image: image166.wmf]j

*

?
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	00
	00
	X0 = X0
	Yes
	0X = 00
	0X = 00
	a

	01
	00
	X1 != X0
	No
	N/A
	N/A
	0

	10
	00
	X0 = X0
	Yes
	1X = 01
	0X = 00
	b

	11
	00
	X1 != X0
	No
	N/A
	N/A
	0

	00
	01
	X0 != X1
	No
	N/A
	N/A
	0

	01
	01
	X1 = X1
	Yes
	0X = 00
	0X = 00
	a

	10
	01
	X0 != X1
	No
	N/A
	N/A
	0

	11
	01
	X1 = X1
	Yes
	1X = 01
	0X = 00
	b

	00
	10
	X0 = X0
	Yes
	0X = 00
	1X = 01
	C

	01
	10
	X1 != X0
	No
	N/A
	N/A
	0

	10
	10
	X0 = X0
	Yes
	1X = 01
	1X = 01
	d

	11
	10
	X1 != X0
	No
	N/A
	N/A
	0

	00
	11
	X0 != X1
	No
	N/A
	N/A
	0

	01
	11
	X1 = X1
	Yes
	0X = 00
	1X = 01
	c

	10
	11
	X1 = X1
	No
	N/A
	N/A
	0

	11
	11
	X1 = X1
	Yes
	1X = 01
	1X = 01
	d
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Figure 150.  Single qubit operation on the first qubit of a two qubit register.
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Figure 151. Verification that doing a Not operation on the second qubit toggles it to 0.

It is easy to see how this algorithm for matrix expansion can easily be expanded to arbitrary sized operations on arbitrary matrices. 

Another manipulation of operations that is needed is to handle reordering of qubits in an operation. With the standard CNot operation, the first qubit is the control and the second is the target. Both the circuit and matrix form of the standard CNot is shown in Figure 149. What if it needs to be reversed? The circuit and matrix form (from [3]) of the reversed form are shown in .
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Figure 152. Circuit and matrix form of the standard CNot operation.
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Figure 153. Circuit and matrix form of the reversed CNot operation.

This can be accomplished with a slight alteration to the explicit matrix algorithm outlined by Spector. As Spector outlines the algorithm, when constructing 
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 and 
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 the bits are concatenated from the indices in Q in numerical order. To handle the reordering we can concatenate the bits in the applied order. For the CNot example this effectively means that the bits are swapped when creating 
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 and 
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. 

As a an example,  take 
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 in the input matrix (standard CNot, Figure 149)– which is the rightmost 1 in the matrix. From there we need to compute 
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 and 
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, where i = 3 and j = 2. Expressed in binary 3 is 11, when those bits are swapped they remain the same, so 
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. j is a more interesting example, and is represented by 10 binary. In Spector’s standard matrix expansion we would have 10 binary since the bits are concatenated in numerical order, effectively unchanged: bit 0 from j goes to bit 0 in 
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, and bit 1 from j goes to bit 1 in 
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. However the applied indexes that we want is not index 0 then index 1, but the opposite: index 1, then index 0. Consequently we take bit 0 from j and place it in bit 1 in 
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, while taking bit 1 from j and putting it to bit 0 in 
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. So for position 2 (10 binary) we move it to position 1 (01 binary). This effectively moves it 1 row to give the rightmost 1 in Figure 150. More explicitly, the rows and columns from i and j and transformed to the rows and columns of 
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 and 
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 by the following transformation (in decimal, starting at 0): 
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.

Taking this a step further, take an arbitrary two qubit operation given in Figure 151. In binary the rows and columns are numbered 00 through 11. We’re swapping the bits, which leaves only the corners of the matrix unchanged. All other elements are shifted due to the swapping of the bits, giving the matrix in Figure 152. It is easily seen how the standard CNot operation is transformed to this reverse on.
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Figure 154. Arbitrary two qubit operation.
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Figure 155. Arbitrary two qubit operation after swapping the two qubits it operates on.

Given the modified explicit matrix expansion algorithm, any quantum operation can be adjusted to apply to any number of qubits
 in any order. As operations are applied in Cove, this algorithm is utilized to expand and reorder the operations as needed. This is all done within the local simulation and not exposed to a user. Thus a user does not have to be concerned with the true ordering of the qubits or the fact that they may only be dealing with a subset due to slicing.
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� Recall that the probability is the probability amplitudes absolute value squared.


� A valid state is one where all the probability amplitudes in the register total 1 when their absolute values are squared and summed together. 


� Of course, it is invalid to apply an operation to a smaller number of qubits than the unexpanded operation. So a CNot over a single qubit is invalid.
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